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SUMMARY 

In an attempt to overcome some of the well-known ‘problems’ with the QlPo element, we have devised two 
‘stabilized’ versions of the QIQl element, one based on a semi-implicit approximate projection method and the 
other based on a simple forward Euler technique. While neither one conserves mass in the most desirable manner, 
both generate a velocity field that is usually ‘close enough’ to divergence-free. After attempting to analyse the two 
algorithms, each of which includes some ad hoc ‘enhancements’, we present some numerical results to show that 
they both seem to work well enough. Finally, we point out that any projection method that uses a ‘pressure 
correction’ approach is inherently limited to time-accurate simulations and, even if treated fully implicitly, is 
inappropriate for seeking steady states via large time steps. 
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1. INTRODUCTION 

In our quest for a more efficient method for solving time-accurate, viscous incompressible flows over 
arbitrarily complex geometries such as submarines and automobiles, and perhaps to get back ‘in 
vogue’, we have made a brief investigation into the possibility and feasibility of converting our e l P o  
(bilinear velocity, piecewise-constant pressure) semi-implicit GFEM code based on a (mostly) second- 
order projection method into a stabilized equal-order interpolation code, namely QlQl, The principal 
‘drive’ behind our effort was the hope that a simpler ‘Laplacian’ matrix, used each time step to solve a 
pressure Poisson equation (PPE), would noticeably reduce the number of conjugate gradient iterations 
(with diagonal preconditioning) needed, the computing time for which consumes the great bulk (say 80 
per cent f 10 per cent) of the cost of each time step. A secondary objective is related to the potentially 
inaccurate approximation to VP when using QlPo on general meshes via distorted isoparametric 
elements; 1,2 a bilinear approximation for pressure is obviously more accurate than one that is constant 
over each element. 

The desire to use (stable) equal-order interpolation is easy to understand and it is therefore not 
surprising that much effort has gone into the quest. Thus we begin by listing a sample of related 
history-some finite element, some finite difference, and some finite volume, but most finite 
element.3-’9 The ‘fixes’ in these papers are many and varied and herein we present our ow-a ‘fix’ 
that we admit to being ‘partial’ at best and, probably like some of those used in the past (Galerkid 
least squares methods excepted), not completely ‘understood’. Our fix, like that of many others, is 
based on the notion of an ‘approximate’ projection in which we stabilize an otherwise unstable 
velocity-pressure pair by sacrificing discrete mass conservation. In fact, the nice term ‘approximate 
projection’ came from outside the FEM community. 16,18 
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In the remainder of this paper we shall describe our attempts at generating a useful QIQl stabilized 
element, beginning with the semi-implicit projection method and ending with an explicit method. 
Finally, both will be demonstrated via some 2D numerical examples. 

2. THEORETICAL DEVELOPMENT 

The equations of principal interest are 

au 
- + u ~ v u + v P = v v 2 u ,  
at 

V . u = O  in Q, 

with 

u = w ( t )  on r = a Q ,  S, n - w = 0, (3) 

U = U O ,  V - u o  = O  in SZ at t = 0 ,  n - u o  =n-w(O) on r, (4) 

although later we will generalize the boundary conditions (BCs) to permit flow-through. 
Since these ‘primitive equations’ are usually considered as too difficult to solve as stated 

(computationally, fully coupled; at least in 3D), the following pressure Poisson equation (PPE) 
formulation is of much interest. Using a(V. u)/at = 0 in (1) leads, using (2), to the PPE 

V ~ P  = v - (vv2u - u - VU) = v - a in 0, ( 5 )  

withzo 

where we note that a = vV2u - u * Vu is a partial acceleration (sans VP). 
The PPE (derived) formulation comprises (1) and (3H6),  i.e. (2) is omitted because it is implied.2’ 
The weak (Galerkin) form of the continuum PPE formulation is 

/v . ($+u*Vu)  + v ( V U ) ~ : V V - P V . V = O  V V E  Hh, (7) 

Remarks 

1. The above PPE formulation assures that V - u = 0 only in a very weak (and vague) sense, in that 
i f (7)  and (8) + (1) and (3H6), then V - u = 0, i.e. if our weak solution is also a classical solution, 
then u will be (strongly) div-free. These are big ‘ifs’. 

2. The PPE formulation has more solutions than the u - P formulation, but the extras are spurious, a 
particular example being that V - uo need not vanish in order that PPE solutions exist-any uo ‘works’. 
See Reference 22 for others. 

3. The integration by parts of both sides of ( 5 )  has resulted in a (legitimate) cancellation of 
boundary integrals via (6),  with the result that a - V q  is a (negative) weak divergence of a in R only. 
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4. The OBC (open boundary condition) implied by (7), when a portion of r is 'open', i.e. when (3) 
does not apply on all of r, is vdu/dn - nP = 0, a natural BC, while that associated with (8) is the 
essential BC P= 0; the two are compatible if vdu,/dn = 0, a generally desirable OBC. Stated 
differently: setting P = 0 on an open boundary in this formulation implies that dun/& = 0 there. 

If we discretize ( 1 x 4 )  via the GFEM, we arrive at the index 2 DAE (differential-algebraic 
equation) system 

MU + N(u)u + CP = Ku + f ,  40) = uo7 (9) 

(10) 
T T c u = g ,  c uo =go,  

wherefand g correspond to data from the BCs. Note that (9) also corresponds to the finite-dimensional 
version of (7). Here C corresponds to 'grad' and CT corresponds to ' - d i ~ ' . ~ ~  , in fact, 

(c ) . .=-  T [J *.- ,acpJ, J*i3 
B ax 

where we remark that cp represents a velocity basis function and $ a pressure basis function, even 
though $ = cp in our code. (We distinguish between them in the interest of clarity.) Converting this to a 
lower-index problem (also easier for time integration) is achieved by inserting U into the time- 
dzferentiated version of (1 0): the resulting index 1 DAE system is (9) and 

(CTMPC)P = cTM-"Ku + f  - N(u)u] - g, (1 1) 

wherein we note that CTMM-' C approximates - V2. 
As with the continuum PPE formulation, the discrete index 1 formulation uncouples the pressure 

from the acceleration (its 'raison d'Ctre'). Also as with the continuous formulation, violation of 
CTuo = go results in an ill-posed index 2 problem, but the index 1 version, having more solutions, is 
not ill-posed. It is just not right: the resulting discrete velocity field will not satisfy CTu = g. (It will 
satisfy c T u  = g + cTuo - 

For comparison with what follows below, we now introduce the projection matrix 

B = I - M-'C(CTM-'C)-'CT, (12) 

which is a 'formal' construction only, i.e. it is never explicitly formed (nor is M-' unless the mass is 
lumped). B has the following properties. 

1. P2 = 9; it satisfies the definition of a projection. 
2. If 12 is an arbitrary velocity field, then Bii is, for g = 0, an M-orthogonal projection to the 

3. The eigenvalues of 9 are either zero or unity and its norm is unity. All discretely divergence-free 

In terms of 9 the index 1 problem can be 'condensed' (again formally) to an index 0 problem (i.e. to 

(discretely) div-free subspace, i.e. u = Bii satisfies CTu = 0. In fact, CTB = 0. 

vector fields are eigenvectors of B with eigenvalue unity. (If CTu = 0, then B u  = u.) 

a set of ODES) 

ti = 9M- ' [Ku  + f - N(u)u] + M-'c(cTM- 'c ) - 'g ,  (13) 

which clearly satisfies CTti = g; the PPE method preserves the divergence of the initial velocity field. 
Only an initially div-free velocity field will remain div-free. 

Suppose though that we use instead (7) and (8), which is our plan, to generate our GFEM equations. 
The result is (9) and 

LP = h, (14) 
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where 

L, = vcpi.vcpj s 
is the ‘conventional’ GFEM Laplacian (-V2, in fact) and (Pk is the basis function (bilinear herein) 
associated with node k. The RHS vector is 

hi E Vcpi * (vV2uh - .I aw uh - V U ~ )  - cpin * at sr 
from the finite-dimensional form of (8), with uh representing the GFEM velocity. Clearly some 
remedial action is required if C? basis functions are to be employed (for which V2uh is not well- 
defined); for one type of response see Reference 8.  For a ‘rationalization’, note that 

v vcp v 2 u  = u s ,  cpn * v 2 u  s 
when V - u = 0 and thus the omission of the viscous term in (1 6) can only ‘affect things’ near T-an 
especially valid approximation for large Reynolds number (small u). (See Reference 19 in which the 
viscous term in (16) was omitted, yet good results obtained even for steady Stokes flow! This is the 
‘biharmonic miracle’ in action.25) In our formulation an approximation to (14H16) is, for the 
projection method at least, actually only required at t = 0 to estimate the initiaZ pressure field; for t > 0 
the pressure is determined by other methods that are described below. 

Let us summarize our method for computing Po given a div-free (or nearly so) velocity field uo. We 
begin by returning to (8) with, for convenience, awlat = 0 on r (time-independent Dirichlet data) and, 
realizing that the viscous term in a cannot be evaluated rigorously, we first set up and solve an ‘aside’ 
problem for a-a best L2 fit to the given data (unless we invoke mass lumping): 

[vVV: ( V U ) ~  + v * (U * VU)] VV E H’, (17) 

in which we apply some of the same BCs to a that apply to u. We use a = 0 on TB while on TN we 
assume aulan = 0 and thus omit the boundary integral. Some consequences of these choices will be 
discussed below, in addition to the following: we select test functions (in H’) that vanish on TD. The 
FEM realization of (17) is, via ah = Cajcpj, etc., simply 

s r v 2 - s  
v - a = vv - v 2 u  - v - (u * VU) = . I s  

u = M-’[Ku - N(u)u], (18) 

LP = b a ,  (19) 

where a is the vector of nodal ‘accelerations’, which goes into (8), (14) and (16) to give 

where 6 is a ‘divergence’ matrix to be more carefully defined in Section 4. (Also, we have not yet 
implemented time-varying Dirichlet BCs.) The ‘consequences’ referred to above are mainly from the 
use of a = 0 on rB which causes a few problems. 

(i) For a Stokes flow (or for the viscous part in general) the Neumann BC for the pressure, via 
forming local nodal equations and letting h --+ 0, turns out to be aP/an = $ un - V2u, with the 
factor of $ a direct consequence of using n - a = 0 on TD. 

(ii) However, the error seems to be ‘local’ in the following sense. A Poiseuille flow test case did 
indeed produce one-half of the proper pressure gradient at the inlet only, i.e. the slope was one- 
half of the correct value in the first column of elements, but it recovered to virtually the correct 
value in the remainder of the channel and the velocity field was nearly perfect. 

(iii) The ‘viscous error’ at the boundary is mainly a ‘low-Reynolds-number’ problem. 
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Next we introduce and immediately dispense with an idea that we actually tested: just replace CTM-' 
by L in (1 1) and solve the resulting index 1 problem comprising (9) and (1 1) with CTM-' C replaced by 
L. It then follows that LP = CTM-'(Mu + CP) - g, i.e. CTu - g = (L  - CTM-'C)P # 0; this 
approach can not 'preserve the div.' In fact, time integration yields CTu(t) - g ( t )  = 
CTuo - go + ( L  - CTM-'C) P(z)dz-the div can be 'anything,' even if CTuo = go.  Also, if a 
steady state is attained, the pressure field would necessarily satisfy LP = (CTM-' C)P. This was a bad 
idea; the results of a numerical experiment agreed with the above analysis-and of course the 
experiment preceded the analysis! Figure 1 shows the result of a lid-driven cavity simulation (Re = 100) 
that went steady state; the velocity is far from div-free and the pressure does indeed satisfy 

We and many others have generated codes based on the index 1 formulation of (9) and (1 1) using the 
QlPo element. However, with the exception of our ad hoc procedure in Reference 26, all QlPo index 1 
codes 'required'-as did ours in the test just described-the (also) ad hoc (and more deleterious) 
approximation of mass lumping (because M-' is otherwise dense), which introduces a serious loss of 
accuracy for the bilinear element when the flow is advection-dominated (vortex shedding, for 
example). Additional bad features of this element are the following. 

LP = (cTM-'c)P. 

1. It suffers from the 'bent element blues'2 ; i.e. the CP approximation to V P  is not very accurate 

2 .  The staggered mesh 'bookkeeping' is not fun. 
3. The Laplacian matrix C T M ~ ' C  is 'awkward' and is suspected to converge 'too slowly' when 

iterative solvers are used. (ML is the lumped version of M.) 
4. It fails the LBB (Ladyzhenskaya-Brezzi-Babushka) test, i.e. the velocity and pressure spaces are 

not quite compatible. While this is a fatal flaw in the eyes of many mathematicians, those 
'engineers' who have been bold enough to try it anyway know that it can and does deliver good 
velocities and-perhaps (when needed, z - u specified on all of r) after postprocessing via the 

when the elements are quite distorted). 

X 

Figure l(a). Steady vector field for a lid-driven cavity at Re=100 
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Figure I(b). Streamfunction from Figure I(a) 

‘CB filter’ described in Reference 27-good pressures. (See Reference 28 for further defensive 
arguments, including a new convergence proof.’) 

5. It is necessary to integrate VP by parts in the weak formulation, a consequence of which is 
outflow boundary condition difficulties when body forces are 

Thus, to get back ‘in vogue’, we made an attempt, described below, at creating a stabilized equal- 
order element, namely QlQl, which overcomes at least the first two flaws. However, features 3 and 4 
still ‘shoot it down’ and mass lumping still seems required. To implement a consistent mass QlQl 
element and to pass ‘LBB’ (which QlQl fails in spades), we invoke an ‘approximate projection’ in 
much the same way that many before us have done: we replace the ‘bad’ Laplacian in (1 1) by the 
‘good’ (conventional GFEM) Laplacian (1 5); and, after reverting to mass lumping, we also devise an 
explicit PPE method somewhat along the lines followed in Reference 12. However, in both cases the 
‘replacement’ is only part of the fix; more is needed, in the form of ‘tricks’, to obtain useful algorithms. 

We shall now describe our two methods for stabilizing QlQl, beginning with the semi-implicit 
approximate projection method. 

3. FIRST METHOD-SEMI-IMPLICIT APPROXIMATE PROJECTION 

There are three major steps to the derivation (and execution) of this technique. 

Step I 

Replace the weak form in (7) by 
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which, because V P  is not integrated by parts, implies vau/an = 0 as an OBC, which is generally and 
ill-posed boundary c ~ n d i t i o n . ~ ~ , ~ ~  However, we get away with this ‘variational crime’ because we will 
no longer require a ‘stringent’ version (even discretely) of V * u = 0. 

Step 2 

Generate the following index 2 DAEs from (20) and (2) :  

Mu + N(u)u + GP = KU +f, u(0) = uo, 

Du = g ,  Duo = go, 

where G and D are no longer transposes of each other; in fact, 

is the gradient operator and 

is the divergence operator and we note that D = - CT. It is true, however, up to the boundary at least 
(owing to the boundary integral when integrating by parts), that div-grad symmetry is respected, i.e. 
D = - GT in the interior. 

Step 3 

Solve the DAEs via the following approximate projection method. Given u, and P,: 

(i) Solve 

for &+I ,  the intermediate velocity, i.e. solve 

(ii) Project fin+, to the approximately discretely div-free subspace as follows. 

(a) Solve 

Jw,+1 - P,) = -[D(kl+l - un) - &,+I - g, ) l /At  

for AP 
(b) Compute the projected velocity from 

U,+I = &+I - AtMclG(P,+I - P,). 

(iii) Finally, update P and go to the next time step; i.e. go to (i). 
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The approximate projection algorithm in (23t(25) is derived as follows. Given &+I ,  solve for 
P,+I - P, and U,+I from 

Dun+1 = g n + l  + (Dun - gn), (27) 

which is called ‘projecting the difference’-a required ‘trick’ obtained from J. Bell (LLNL, personal 
communication) and perhaps better motivated as follows: solve DiC = g ,  with Duo = go, via the 
approximation D(u,+l - u,) /At  - g , ) / A t .  Note, however, that because of the next trick 
below, Du=g is never quite achieved in this method, thus explaining the name ‘approximate’ 
projection. Equations (26) and (27) imply the following ‘PPE’ for the pressure update: 

(DML] G ) ( P ~ + I  - pn> = [D(Un+l - un) - &,+I - gn>I /~ t t  (28) 

which is replaced by (24) (DML’G in (28) is replaced by -L)  and is the final ‘trick’ referred to 
above-a replacement made necessary because DM;’ G has too many spurious pressure modes (fails 
LBB; it also describes a very ‘broad’ stencil, coupling 25 nodes in 2D and 125 in 3D!) and made 
‘interesting’ because iterative solvers should be better behaved with L (i.e. require fewer iterations), or 
so we thought (hoped). The L-matrix is also much more ‘compact’: it couples only nine nodes in 2D 
and 27 in 3D. 

Remarks 

1. The use of (P,+l - P,)/2 rather than P,+1 - P,  also  work^'^^'^^ and may even seem more 
consistent, but it is less robust in that the pressure sometimes displays 2At oscillations. 

2. Ifg, -Du, is omitted from the RHS of (24), the results (which we have also seen experimentally) 
are disappointing in that (at least) a steady pressure cannot be attained even when the velocity becomes 
steady-it changes linearly in time. This is explained as follows @,+I = u, = un+l at steady state). 

(i) Equation (24) becomes AtL(P,+, - P,) = g, - Du, = e,  # 0 because u is always only 
approximately div-free; there is then a constant increment to the pressure field at each step 
even.though the velocity is steady. (With g, - Dun present, e,  = 0 and thus P,+1 - P, = P,.) 

(ii) There is only one way possible to obtain a steady velocity and a linearly changing pressure: 
P, in (24) must contain a steady part and some pressure modes (one or more) from the null 
space of G.  Thus from (24) (sans Du,-g,) applied at steady state we must have 
P,+1 = P, + [ (n + l ) /A t ]L- ’e , ,  where P,  is the steady pressure corresponding to us and 
L-le, = P,  is some linear combination of the vectors in the null space of G; the pressure 
‘grows’ linearly with time because e,= LP, excites (in general) one or more pressure 
modes. 

3. BTD (balancing tensor diffusivity) is employed (K  is modified to compensate for the problems 
associated with the explicit Euler treatment of advection; see Reference 3 1 for details). 

Related to the pressure mode remark is the following: we have implemented a start-up procedure in 
which we can iterate on the approximate projection of an ‘arbitrary’ IC vector uo to try to bring its 
discrete divergence closer to zero. 

(i) Given uo with Duo # g o  = 0 (for simplicity). 
(ii) Project uo towards the div-free subspace via u1 = PauO, where 
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is the 'approximate' projection matrix (i.e. the exact matrix of the approximate projection) 
implied by (24) and (25). Note that YPf # Y,, and the sign change. 

(iii) Since Dul = D ~ , u o  = ( D  + DM;'GL-'D)uo # 0 but is hopefully small (especially, smaller 
than Duo!), one may try repeatedherated projections. 

(iv) urn = 9 r u 0 ,  m = 1, 2, . . . , which leads to a consideration of the spectrum of 9, and its 
'relative', the error matrix 

E = I  + DM,-'GL-~. (30) 

so-called because E= 0 if DML'G = -L; we hope that -DM;'GL-' x I .  They are 'related' 
because (a) they have the same spectrum and (b) Du, = F D u o  is the 'iterated' divergence 
since D 9 :  = E"D. We shall assume that I /  E I /  is 'small', O(h) or better, in the sense that 
Eq =O(h) for a sufficiently smooth vector q. (The 'iterates' are of course obtained as follows: 
solve Lq, = -Durn-, for qm and compute urn = U,-I - MLlGq,.) 

(v) After assuming that 9, has a complete set of eigenvectors, we have: since 9 r u 0  = c,"=, a,Apj 
and Du, = xgl aj,$"zj, where (Aj, xi) are the eigenvalues and eigenvectors of 9, and 
(A,, zj = Dx,) are those of E and where uo = c/"=' ajxj and DUO = c,"=, ajz,, it follows that u, 
(and Durn) will tend to (1) zero, (2) infinity or (3) a constant, according to whether 

(1) all As are less than unity in magnitude 
( 2 )  one or more As are larger than unity in magnitude 
(3) some are less than unity and one or more are equal to unity in magnitude. 

(iv) We have found experimentally that case ( 3 )  is observed-iterating on the projection reduces 
the div, but only up to a point (asymptote), not to zero; also, S r u ,  approaches a constant. The 
explanation is the following: u, approaches a constant implies that (a) is norm-reducing 
('stable'; u = 9,uo u llill uo 11) and (b) Y, has some eigenvectors with 1 =l .  That (b) 
is true is actually quite obvious, since, like the true projection matrix discussed earlier, any 
discretely div-free vector (Dx = 0) is such an eigenvector. A heuristic argument that (a) is true 
follows from a Rayleigh quotient argument and utilizing D = - GT (up to boundaries): 
9,xj = Ajx, =+ (Aj  - 1)xj = MLlGL-lDxj + (Aj  - 1)Dxj = -GTM<'GL-'Dx, =+ 1 - Aj = 
(Gy,)TMc'(Gyj)/y~Ly, 2 0, where y, -- L-'Dx, = Ll:'z, since L is SPD; thus Aj 5 1 ,  with 
A, = 1 corresponding either to Dx, = 0 or to a pure pressure mode of G, i.e. Gyj = 0. Since this 
analysis is only rigorous when there are no open boundaries, yet we observe the stated results 
for all types of BCs, it must be the case that boundary differences are unimportant. 

(vii) Similarly, Du, approaches a constant implies that E is norm-reducing and has at least one 
eigenvector (with A =1) that satisfies DM;' G-'z = 0, which vector is also easy to find; just 
take L-'z = P,, any null vector of G (which often has quite a few28). 

The 'bottom line' here is this: if Duo has any projection onto the null space of G, the iterated 
projection will tend to a constant with a non-zero (but 'small') constant div-and this appears to be the 
'general' case. 

Now comes the 'hard part----analysing the resulting algorithm to show that it is actually useful. We 
admit up front that we have not yet been totally successful. However, being what Strang and Fix3* call 
'mathematical engineers', we tested it in the computational laboratory anyway. (It works. This happens 
often with engineers, but definitely not always.) If we study (23H25) for At+= 0, we get, with 
F, ~ . f n  + Ku, - N(u,)u, - GP,, 

[ 13 U,+ I = u, + AtM-' F, + O( At2) 
[2] L(P,+l - P,) = -DM-'F, + g, + O(At) 
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[3] un+l = &,,+I + ArM;'GL-l(DM-lF,, - gn) + O(At2) 

[4] Du,+~ 
[5] thus At -+ 0 =+ U = B,M-'[f + Ku - N(u)u - GP] - ML' GL-lg and thus 
[6] DiC = DY,M-'F - DML'GL-lg = EDM- ' [ f  + Ku - N(u)u - GP] - (DMf'G)L-'g 

= u, + At(PP,M-'F,, - MLIGL-Ig,) + O(At2)  
Du, - At[EL(P,,+l - P,) - gn] + O(At2)  

and the problem is to reconcile [4] with [6]; the former implies DU = -EL[limAf,o(Pn+l - Pn)] +g 
and the two are only in accord if 

E{(DM-'G)P - D M - ' [ f  + KU - N(u)u] + g }  = EL lim (P,+I - P,,), (3 1) 
Af+O 

which, with lirnA,+o(P,,+, - P,,) = 0 and without the E-factor, is just the PPE that we would like the 
pressure to obey+orresponding as it does to an exact projection! Also, if this is true, then [5] above 
yields 

U = M-I[ f + Ku - GP - N(u)u], (32) 

also the 'desired' result, i.e. if (31) and (32) were truly satisfied (in the limit) by our approximate 
projection method, we would have a discretely div-free velocity and presumably a better solution-at 
least up to the spurious pressure modes of G .  (Note the mysterious disappearance of the L-matrix.) 
However, we have not been able to show that Pn+l - P,, = O(At).  In fact, a sort of 'converse'seems to 
be true; namely, starting from the initial pressure Po obtained from 

LPO = -DM,-"fo + Kuo - N(u0)uol + g o ,  (33) 

we find, at the end of the first step, L(P1 - PO) = ELPo + O(At )  +O(H) and Dul = gl+ 
AtE2LP0 + O(At2)  +O(AtH), where H = ML'M - I is a 'small' (O(h7, where k=l  or 2) matrix 
in the sense that Hu= O(hk) for a sufficiently smooth vector u. These are not encouraging 
results+ven with mass lumping (H= 0). 

However, the resulting code seems to perform much better than these gloomy results would 
indicate-as we shall show. 

4. SECOND METHOD-EXPLICIT EULER 

The other method used to stabilize QlQl is simple explicit time integration. As with the 'modified' 
projection method described above, some 'tricks' are needed to come up with a method that 'works'. 
Also, like the projection method, the resulting algorithm seems to detjl rigorous analysis that proves 
convergence-but we will present what we do have. 

We begin 'conceptually' by applying the forward Euler method to (21) to get 

M(un+l - un)/At + N(un)un + GPn = Kun +fn, 

(DM-'G)Pn = D M - ' [ f ,  + Kun - N ( u ~ ) u ~ ]  - ( g n + l  - gn) /At ,  

(34) 

(35) 

where the pressure is first computed from the PPE, derived from (21) and (22), 

a simple algorithm that merits the following remarks. 

Remarks 

1. It is only viable if mass lumping is invoked-a degradation we would like to avoid. 
2. The 'consistent' pressure matrix DM-' G is plagued with multiple spurious pressure modes and 

associated solvability constraints.28 
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We must live with mass lumping, but we did succeed in stabilizing the above 'LBB-unstable' 
method by the Combination of (i) replacing DM-lG by - L  (which, as shown earlier, is not in itself 
viable), (ii) replacing g,  on the RHS of (35) by Dun and (iii) replacing D by -B, where 

a la (8), and we remark that b corresponds to (-div) except at boundaries (owing to the integration by 
parts in (8)). Also true is that b = B + CT = GT and D + B = B, where B is the boundary matrix, 

Thus (35) is replaced by 

LPn = bM:' [ fn  + Kun - N ( u ~ ) u ~ ]  + (gn+ l  - Dun)/At 

U,+I = U, + AtML'[fn + Ku, - N(u,)u, - GP,]. 

(36) 
and (34) by 

(37) 
This is the explicit algorithm that works-except that the last term on the RHS of (36) is omitted at 

t=O-on the assumption that we either start up with a div-free velocity or we perform multiple 
(iterated) approximate projections so that DUO X go. That a portion of the resulting 'pressure' might be 
interpretable as a Lagrange multiplier that penalizes divergence error can be easily seen by considering 
(36): unless Dun - g,  = O ( A t )  or less, the At += 0 result is 

AtLP, --+ g,+l - Du, = g ,  - Du, + O(At) ,  (38) 
i.e. AtP, = A,, is finite even for At += 0 if Dun # g,.  This 'part' of P,  can clearly not be a 
pressure-which calls to mind the statement in Reference 33, 'Not all quantities called P are equal'. 
Our version is 'Not all quantities called P are pressure'. 

As with the approximate projection method, our analysis of the algorithm is incomplete, but we 
present now what little we do have. We begin by applying the divergence operator to u,+' from (37): 

(DM['G)P, = DM{'[ fn  + Ku, - N(un)un] - D(u,+l - u, ) /A t ,  (39) 
which, when combined with (36), yields, at least away from boundaries (whence 
n 2  1, 

= - D )  and for 

Du,+1 - g,+l = -At(L + DMc'G)P, = -AtELP,, (40) 
showing that, if P,  = O( 1) in A? (which may not be true for all n), the error in the discrete divergence is 
O(hAt). (Clearly, however, if we started div-free, then Po is surely independent of At and thus 

Next we eliminate Dun from (36) via (40) with the index dropped by one to obtain (for n 2 2) 
Dul -g l  = @At) . )  

-(DMLIG)Pn-I =fiM;'[f, +Kun -N(un)un] +&,+I -gn) /A t -L(Pn  -Pn-l) ,  (41) 
which can be rewritten as (add -DM,-'G(P, - Pn-l) to both sides) 

-(DM{'G)Pn =bM,-'[f, +Kun-N(un)un]+(g,+l -gn) /At -EL(Pn -Pn-l) .  (42) 
Now for another big if: if P, - Pn-l = O(At) ,  (42) will clearly converge to the consistent QIQl 

PPE 

(DML'G)P = - b M : ' [ f  + Ku - N(u)u] - g, (43) 
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which is the lumpted mass version of (3 1) without the E-factor on the RHS after using - D = b. Again 
there seems to be a 'mysterious disappearance' of the L-matrix. Also, if h + 0 at fixed At, the L-matrix 
term vanishes (because E on any vector does). If in fact (43) is true, it follows from (37) for At + 0 that 

DM = DMcl [ f + KU - N(u)u] - DML' GP = g, (44) 

another miracle-mass conservation if Duo =go. Thus, just as with our semi-implicit algorithm, we 
need Pn+l - P,, = O(At)  to realize optimal (up to spurious modes) behaviour. 

Another analysis, with g = 0 for simplicity, goes as follows: given uo with DUO # 0 but 'small' (with 
or without iterations), apply inductive analysis starting at n = 0 and again neglecting the 'boundary 
term' by assuming D + b = 0 to obtain 

L(Pn+ 1  - pn) = - D M ; ' [ ~ +  1 -.L + K(un+ 1 - un) - ~ ( u n +  I ) u n +  1 + ~ ( ~ n > ~ n l  

- EDM,-'[ j;t + KUn - N ( u ~ ) u ~ ]  - DM;'GL-'Dun/At 

= O(At) - E D M c ' [ f ,  + Ku, - N(un)u,,] - (DM<'G)L-'Du,,/Af. (47) 

From these results and those presented earlier, we conclude the following (assuming that the 

1. If Duo is 'small', less than or equal to @At), so too will be Dun and P,,+l - P,,; the simulation 
may be good for all t 2 0. 

2 .  If Duo is 'large', (46) shows that Dun will still be reduced at each step, tending towards a constant 
part, an O(At) part and an O(h) part caused by the E-term. Also, (47) shows that Pn+l - P,, will 
not be O(At), at least not initially; it is O(h) + O( l/At). It may eventually get there or it may not. 
In this case the early portion of the simulation will generally be devoid of physical meaning-as 
indeed might the whole thing. 

3. It is thus generally advisable to iterate on the initial velocity to try to drive the div down to an 
acceptable level before beginning the simulation. Better still is to start with Duo = go. 

Again the computer code seems to be smarter than its designers in that the algorithm delivers better 

neglected boundary terms do not alter the results). 

results than it 'has any right to'. 

5 .  NUMERICAL RESULTS 

The first thing we test is the ability of the approximate projection to 'preserve the div'-here with the 
semi-implicit version. Recall that we noted below (13) that methods based on solving the PPE will 
maintain (pointwise) the initial velocity divergence, a fact demonstrated in Reference 24. A portion of 
those experiments is repeated here. At t= 0 we set u =  3 and v =  2 at one node of a presumably 
incompressible fluid in the unit box; all other nodes had uo = 0. Figure 2 shows the steady solution at 
Re =lo. While not a solution of the Navier-Stokes equations, the result does help 'grade' the quality of 
the approximation projection: 11 V - u, ( I R M S  0.6 11 V - uo I I R M S ,  which is not bad. In another 
experiment we iterated the projection on the single vector initial condition above (25 iterations) to 
reduce the initial spurious div, as discussed above. The resulting time integration was successful in that 
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a meaningful simulation (spin-down) did occur, with results that looked much like those in Figure 16 
of Reference 24. Finally, application of the explicit QlQl approximate projection to the given initial 
vector also resulted in a semi-meaningful spin-down (slowest Stokes decay mode, ultimately), clearly 
demonstrating that the ‘penalty’ term on the RHS of (36) is also acting like an ‘iterated projection’ 
during the time integration; more obfuscation. 

However, we have successfully (for the most part) compared QIQl against our workhorse QlPo for 
lid-driven cavities and vortex shedding past circular cylinders. Here we show a sample of results for 
flow past an aerofoil (waterfoil, actually) at Re=104 (based on chord c) at a small (1.2”) angle of 
attack. The particular aerofoil, ‘a NACA 16 thickness form with maximum thickness tdc = 8.84% and 
maximum camberfolc = 2.576 per cent with a bevelled anti-singing trailing edge’,34 was tested in a 
water tunnel (incompressible flow!) at MIT’s Ocean Engineering Department as part of a Navy/ARPA 
programme on unsteady fluid dynamics. However, our laminar flow simulations were not meant to be 
compared with their measured data at Re > lo6 because we do not yet have a believable turbulence 
model. 

We designed a ‘truth’ mesh of about 40,000 elements and a test mesh of about 6700 elements. The 
fine mesh was run at Re=103, lo4, lo5 and lo6 using QlPo and our ‘projection 2’ algorithm (an 
‘exact’ projection method).26 The results were not believable at Re =lo6 (chaotic), semi-believable at 
Re=105 (nearly periodic) and believable at Re < lo4. Re=103 (only) produced a steady state result. 
The coarse mesh for Re =lo3 was then run with QlQl; all three results were acceptably close to each 
other. 

We now focus on the Re =lo4 case and compare QlPo on the two meshes with QIQl on the coarse 
mesh. Qualitatively the flow is one of periodic vortex formation and shedding of vortices at the trailing 
edge. Nowhere else is there any interesting dynamics. Figure 3 shows snapshots of vectors, 
streamfunction and vorticity from QlPo on the coarse mesh (vectors are interpolated via a coarser-yet 
mesh graphics package). Figure 4 shows time histories of the x-component of velocity at a node just 
above the trailing edge (about 0.002~); it is #8101 on the fine mesh and #1361 on the coarse mesh. The 
agreement of semi-implicit QIQl with QlPo on the coarse mesh is quite close, the range of us during 

Figure 2. Steady state solution for testing how well the initial divergence is preserved 
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Figure 3.  MITwaterfoil-snapshots of results at Re=104: (a) streamfunction; (b) vectors and vorticity; (c) and (d) are close-ups 
of (a) and (b) respectively 

vortex shedding being from about -0.07 to 0.16 for QlPo and from about -0.08 to 0.15 for semi- 
implicit QlQl. (The fine mesh results ranged from about -0.10 to 0.20, somewhat stronger, but still 
reasonably close, while the explicit QIQl results (not shown) ranged fiom about -0.17 to 0.35, 
stronger yet.) The pressure histories, shown in Figure 5, are of similar quality; the coarse mesh results 
ranged from about - 0.17 to - 0.3 1 for QIPO, from about - 0.16 to - 0.27 for semi-implicit QIQl 
and from about -0.17 to -0.41 for explicit QIQl (not shown) compared with the ‘true’ results from 
about - 0.15 to - 0.33. Note that we selected a particular challenging point in the flow field in order 
to emphasize differences. (In all cases the inlet velocity is 1.0, as is the velocity on the top and bottom 
boundaries-tow tank BCs). The OBCs were ‘natural’, i.e. vaU/ax - P = 0 = uau/ax for QlPo and 
vaulax = vav/$ = P = 0 for QlQl, the latter being imposed as an essential BC in the PPE.) Finally, 
Figure 5 presents, for QIQl and the approximate projection, the RMS norm of V * u-showing a 
typical tolerable result. 
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Figure 4. Horizontal velocity near trailing edge from three simulations-all ‘projection 2’ 
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Figure 6. Rh4S norm of divergence 
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6. DISCUSSION 

One of the numerical experiments not yet discussed relates to the ‘impulsive start’ (potential flow and 
no-slip BC; see e.g. Reference 21) of flow past a ‘geometric singularity-a convex boundary with a 
sharp (discontinuous) change in slope. This experiment helped to open our eyes to a ‘down-side’ of 
projection methods, both approximate (QlQl) and exact (QlPo): projection methods are inherently 
time-accurate methods-a statement that tends to make them seem more like explicit methods than the 
implicit ones that they (usually) allege to be. This remark and those to follow do not apply to the 
stability-limited explicit method discussed above. 

It turns out that ‘large’-At simulation via Q,Q, and the approximate projection advertises its ‘time- 
accurate’ syndrome rather sooner than does QlPo and the exact projection; namely, if At is not small 
enough, the div-error becomes large enough to be noticeable. However, QlPo is always exactly div-free 
(discretely), regardless of step size, and this turns out to be the more ‘interesting’ case. We go right to 
the ‘limiting and simple case’ to state our major (negative) result: if implicit Euler is used to time 
march the transient Stokes equations and At is allowed to become arbitrarily large, not only is all the 
physics lost, but-rather than obtaining the steady solution in a singre time step, one of the well-known 
characteristics of backward Euler applied to ODES-the ‘integration’ requires an infinite number of 
steps! Yes-the larger the step size, the more of them are required to find the steady solution and the 
‘transient’ is of course meaningless. In the limit the true steady state is not even attainable; rather, the 
algorithm has changed the problem by changing the body force-and the pressure never changes from 
its initial value. These assertions, which may raise some eyebrows, are actually quite simple to prove, 
both for the continuum equations and for their spatially discretized approximations; we choose the 
latter. 

We present the analysis in the simplest way and with ‘condensed’ terminology, i.e. 

U + KU + GP = f (48) 

DU = g ,  (49) 

and 

where D = GT, are the transient semidiscretized Stokes equations and f and g are independent of time 
(and we have changed the sign of K). The backward Euler (exact) projection algorithm is then as 
follows. Given P, and u, with Du, = g for n = 0, 1, . . .: 

1. Solve 

(Un+l - u,) /At  + KUn+l + GPn = f 
for &,+I. 

2. Solve 

DG(Pn+l - Pn) = (Dfin+l - g ) / A t  

for (P,+I - Pn)At .  
3. Compute 

un+~ = & + I  - G ( P ~ + I  - Pn)At. 

4. Bump n and go to step 1. (Note that Dun+l = g ,  as desired.) 

Now consider what happens if the first step is a big one. Take n = 0 and At =a to obtain: 

1. 

El  = K-lcf - GPO), (53) 
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where Po came from 
(DG)Po = D( f - Kuo). 

DG2. = DUl - g ,  

(54) 

( 5 5 )  

2. Solve for 2. = At(P1 - PO) from 

where it is important to note that AtAP is perfectly well-defined, from (5 I), even for At + co, i.e. 
2. (the Lagrange multiplier) is finite even though Pi =Po. 

3. Compute 
U I  = U l  - GA 

= [Z - G(DG)-'D]Ul + G(DG)-'g 

= Yiil + G(DG)-'g 

= Y K - I (  f - GPO) + G(DG)-lg. 

To show that we are 'finished', consider taking a second big step: 

i i ~  = K-'(  f - GPl) = K-'(  f - GPO), (57)  
so that i i2  = U l  and thus u2 = u1(= u3 = . . . = u). What has happened is this: we have converted what 
was, for At sufficiently small, a legitimate approximation method for solving the transient Stokes 
equations to a useless mathematical algorithm that is stable but irrelevant. 

That we indeed have obtained a spurious solution to the steady Stokes equations follows by realizing 
that in order for u and Po to solve the steady version of (48) and (49), it is necessary to change the data, 
i.e. the body force for the steady Stokes solution is no longerf; but is instead, from (48), 

which has introduced another 'obscure' projection matrix, KPK-I-for what it is worth. 
This bizarre behaviour is depicted schematically in Figure 7, in which the horizontal line represents 

the manifold of all div-free velocities 0: = 0 for convenience and to obtain orthogonal projections). 
Any velocity not on this manifold has a non-zero divergence and any solution of the Stokes (or Navier- 
Stokes) equations must lie on this line. For example, if uo is the IC and us is the corresponding steady 
state Stokes solution, then the solution for 0 < t -= co moves along the line from (say) left to right. The 
projection method, on the other hand, first moves the velocity offthis line (u") and then projects it back 
down to i t -once per time step. If At is sufficiently small (say Ati in the figure), the resulting projected 
velocities will be close to 'correct.' The larger At becomes, however, the further is u" taken from the 
div-free manifold and the less likely is the projection method to be useful. The At + 00 situation is 
depicted by U, and a purely 'vertical' oscillation between Urn and u. 

The analogous schematic behaviour of the trapezoid rule integrator is shown in Figure 8 for A t l ,  
At2 > Ati  and At =a, the analysis of which we leave to the reader, as we have already digressed too far 
away from fluid mechanics and into interesting but not useful mathematics. 

7. CONCLUSIONS 

We have introduced and demonstrated two ways to stabilize the QIQl element using approximate 
projections. While we have been more successful at coding than analysis, we are also somewhat 
undermotivated to push on, because the new techniques seem to introduce more problems/questions 
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Figure 7.  Pictonal of backward Euler projection method 
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Figure 8. As in Figure 7 but using trapezoid rule 

than solutionshnswers. They also insidiously reintroduce the spurious null space of the gradient 
matrix. Finally, the code yielded much less speed-up, say 15 per cent or so, when solving the PPE via 
DSCG (diagonally scaled conjugate gradient) than we had hoped for. 

We have also demonstrated, albeit perhaps not for the first time (see Reference 35) but surely quite 
clearly, that projection methods of the pressure correction type are inherently time-accurate methods 
that should not be employed with any but sufficiently small time steps so that the time integration is 
accurate, even if a steady state is finally attained, i.e. the projection method is not a good steady state 
seeker. 
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